
International Journal of Solids and Structures 41 (2004) 2607–2621

www.elsevier.com/locate/ijsolstr
A fractional order rate approach for modeling
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Abstract

The paper analyses the behaviour of concrete in the case of quasi-static fracture. The attention is focused on the

interaction between strain-softening and time-dependent behaviour: a viscous rheological element (based on a frac-

tional order rate law) is coupled with a micromechanical model for the fracture process zone. This approach makes it

possible to include a whole range of dissipative mechanisms in a single rheological element. Creep fracture in mode I

conditions is analysed through the finite element method and the cohesive (or fictitious) crack model. The comparison

with creep tests executed on three-point bending conditions (three different load levels) shows a good agreement both in

terms of failure-lifetime, and, load–displacement.
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1. Introduction

The long-term performance of concrete structures is fundamentally affected by the behaviour of the
material after cracking. It is well known that concrete presents a diffused damage zone within which mi-

crocracking increases and stresses decrease as the overall deformation increases. This results in the soft-

ening of the material in the so called fracture process zone (FPZ), whose size can be compared with a

characteristic dimension of the structure. This dimension is not constant and can vary during the evolu-

tionary process. In this context, a numerical method (based on finite or boundary elements) has to be used

together with the cohesive or fictitious crack model as shown by Barenblatt (1959), Dugdale (1960) and

Hillerborg et al. (1976).

The interaction between strain-softening and time-dependent behaviour is analysed, with the emphasis
on very slow or quasi-static fracture. This is the case of cracking in massive concrete structures like dams,

where inertial forces can be neglected. In this field three approaches will be considered. The first is based on
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Nomenclature

e, e1 deformations of the rheological model

r stress of the rheological model, stress in the cohesive zone

r1 stress of the rheological model

E1, E2 Young�s moduli of the rheological model
g classical Newton�s viscosity parameter

s1 ¼ g
E1

relaxation time

Dað�Þ ¼ dað�Þ
dta fractional derivative operator of order a

a order of differentiation

C Euler�s Gamma function CðxÞ ¼
R1
0

eitðx�1Þ dt ¼ limn!1
nxn!

xðxþ1Þ���ðxþnÞ

� �
yðtÞ generic function of time

U1�aðtÞ kernel of the non-integer differentiation definition

biðaÞ ith coefficient of the numerical approximation of the non-integer derivative
Ec concrete Young�s modulus

K1, K2 elastic constants of the rheological model (see Fig. 6)

m Poisson�s ratio
GF fracture energy (area below the curve of Fig. 5)

ft ultimate tensile strength

rF:C:T maximum principal (tensile) stress acting at the fictitious crack tip

w crack opening displacement (also called COD)

COD crack opening displacement (also called w)
wc critical crack opening displacement (beyond wc no stresses are transferred in the cohesive zone)

Vf aggregate volume fraction

Khom
Ic fracture toughness of the homogenized material

b concrete microstructural parameter b ¼ ðKhom
Ic

Þ2

Ecð1�Vf Þft

� �
Dr stress relaxation due to creep
Dw creep displacement
t time
z distance measured from the bottom of the specimen
Dt time step
drt stress relaxation computed in each point of the FPZ (depends on local conditions only because

it is assumed w¼ const)

dwt creep displacement computed in each point of the FPZ (depends on local conditions only

because it is assumed r¼ const)

dr real stress increment in the FPZ (depends on global and local conditions)

dw real displacement increment (depends on global and local conditions)

H specimen height
Pmax maximum (or peak) load

Pcost constant load level during the creep phase

KT positive definite tangential stiffness matrix

CT negative definite tangential stiffness matrix

P external load vector

Dk load multiplier

Q unbalanced load vector

Du displacement vector
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the concept of activation energy and rate-dependent softening that has been developed in a series of paper

by Bazant and co-workers (Ba�zant, 1992; Ba�zant and Gettu, 1992; Ba�zant and Jir�asek, 1992, 1993; Wu and

Ba�zant, 1993). This method was recently modified by van Zijl et al. (2001). The second approach is based on

the inclusion of a standard rheological model for creep and relaxation into the fictitious crack model in
order to accommodate the time dependency of crack opening, the latter in some instances being established

by fitting stress relaxation results (Hansen, 1990, 1991; Zhou and Hillerborg, 1992; Zhang and Karihaloo,

1992a,b; Carpinteri et al., 1995, 1997; Barpi et al., 1999a). The third approach combines a micromechanical

model for the static softening behaviour of cracked concrete in the fracture process zone (Huang and Li,

1989) with a rheological model for the time-dependent concrete behaviour (Santhikumar and Karihaloo,

1996, 1998; Santhikumar et al., 1998).

In the present paper the third approach is enhanced using a fractional order rate law and is applied to the

numerical simulation of the three-point bending tests described by Zhou (1992).
2. Description of the rheological model

Rheology is concerned with time-dependent deformation of solids. In the simplest rheological model of

the linear standard viscoelastic solid (Fig. 1), the springs are characterized by linear stress–displacement

relationships:
r1 ¼ E1ðe� e1Þ; ð1aÞ

r2 ¼ E2e: ð1bÞ
In this paper, the dashpot is based on the following fractional order rate law for the internal variable e1:
Dae1 ¼
dae1
dta

¼ r1

E1sa1
¼ e� e1

sa1
with a 2 ð0; 1Þ; ð2Þ
where the fractional differentiation of a function yðtÞ is defined according to Oldham and Spanier (1974)

and Carpinteri and Mainardi (1997). Eq. (2) represents a generalization of the well-known Newton�s
constitutive law for the dashpot ðr ¼ g de

dtÞ.
In particular
D�ð1�aÞyðtÞ ¼
Z t

0

U1�aðt ��tÞyð�tÞd�t; ð3Þ
E

σ

εε-ε

σ

2

E1

1 1

Fig. 1. Rheological model.
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where
U1�aðtÞ ¼
t�a
þ

Cð1� aÞ with tþ ¼ t if t > 0

0 if t < 0
:

�
ð4Þ
In the previous expression C represents the Gamma function. Eq. (3) can also be obtained by using an

hereditary model based on a Rabotnov fractional exponential kernel (see Karihaloo, 1995).

A convergent expression for the a-order fractional derivative operator Da is given by
DayðtÞ ¼ D1D�ð1�aÞyðtÞ ¼ d

dt

Z t

0

U1�aðt ��tÞyð�tÞd�t ¼ 1

Cð1� aÞ
d

dt

Z t

0

yð�tÞ
ðt ��tÞ�a d�t: ð5Þ
In the case of a ¼ 1 the classical dashpot with an integer order rate law is obtained from Eq. (2). In

particular, the solutions for the relaxation problem (under constant w) and for the creep problem (under

constant r) become of exponential type, with s1 as the relaxation time, and s1
E1þE2

E2
as the retardation time.

Response diagrams are plotted in Figs. 2 and 3 (see Barpi and Valente, 2003).
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Fig. 2. Stress relaxation functions.
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Fig. 3. Creep displacement functions.
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Fig. 4. Rate of creep displacement functions.
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Fig. 4 shows the the influence of the non-integer derivative on the creep rate (i.e., the derivative with

respect to time of the creep functions). This figure represents another way to show the difference between

the model based on integer derivative (straight line) and the model based on a non-integer derivative

(dashed and dashed-dotted curves).

2.1. Numerical integration of constitutive response

A possible approximation for the fractional differentiation of a function yðtÞ is (Oldham and Spanier,

1974)
nþ1ðDayÞ ¼ 1

ðDtÞa
Xn

j¼0

bjðaÞnþ1�jy; ð6Þ
where it is assumed that the spacing in time is uniform, i.e., ny ¼ yðnDtÞ. The coefficients bjðaÞ depend on the

Gamma function as follows:
bjðaÞ ¼
Cðj� aÞ

Cð�aÞCðjþ 1Þ : ð7Þ
By using the recursion formula
Cðj� aÞ
Cðjþ 1Þ ¼

ðj� 1� aÞ
j

Cðj� 1� aÞ
CðjÞ ; ð8Þ
it is possible to avoid the evaluation of the Gamma function; the coefficients bjðaÞ are given by
b0ðaÞ ¼ 1; . . . ; bkðaÞ ¼
ðk � 1� aÞ

k
bk�1ðaÞ; . . . k ¼ 1; . . . ; n: ð9Þ
For convenience, the expression in Eq. (6) can be rewritten as
nþ1ðDayÞ ¼ 1

ðDtÞa ð
nþ1y � n�yÞ; ð10Þ
where
n�y ¼ �
Xn

j¼1

bjðaÞnþ1�jy ð11Þ
is a known quantity at time tnþ1.
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At this point the updated stress quantities nþ1r can be obtained by using Eq. (10) with reference to

Eq. (2). This finite difference approximation is applied to Eq. (2), and integrated over time, using the General

Midpoint Rule (Enelund et al., 1999).
3. Description of the micromechanical model for the process zone

In each point of the fictitious process zone a micromechanical approach to tension softening is combined

with rheological model described above, according to a strategy proposed in Santhikumar and Karihaloo

(1996) and Santhikumar et al. (1998). Tension softening behaviour appears when the damage in the

material has localized along eventual fracture planes. This behaviour has been successfully modeled using

two- and three-dimensional micromechanical models (Huang and Li, 1989; Karihaloo, 1995).
All models provide a relationship between the residual tensile stress carrying capacity and crack opening

displacement (COD) as a function of known concrete microstructural parameters (included in the factor b),
e.g. aggregate volume fraction Vf , Young�s modulus Ec, ultimate tensile strength ft and fracture toughness

of the homogenized material Khom
Ic (see Fig. 5). According to these models, the function is assumed to be
w
wc

¼ ðKhom
Ic Þ2

Ecð1� VfÞft
ft
r

1

"
� r

ft

� �3
#
¼ b

ft
r

1

"
� r

ft

� �3
#
: ð12Þ
4. Rheological and micromechanical model interaction

During the loading phase each point of the FPZ moves on the same ðr–wÞ curve. Later on this condition

does not hold any longer, due to the combined effect of viscosity and damage.

In order to understand how the rheological and micromechanical models interact, three simple cases are

analysed:

1. if the displacement discontinuity w is kept constant along time step Dt, a stress relaxation Dr occurs

according to the standard viscoelastic element described;

2. if the stress r is kept constant along time step Dt, a creep displacement Dw occurs according to the stan-

dard viscoelastic element described;
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Fig. 5. Cohesive stress–COD law (b ¼ 0:05).
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3. if both stress r and displacement discontinuity w (also called COD) are forced to stay on the static curve

(Eq. (12)), one of the two increments occurs as predicted by the rheological element, while the other is

equal or smaller.

In greater detail, for the first case the unloading stiffness is assumed (effective spring hypothesis, Fig. 6,

centre) while, for the second case, the stiffness tangent to the ðr–wÞ curve of Eq. (12) is taken into account

(E1 ¼ j dr
dw j, Fig. 6, right).

At the end of each time step, the microcrack pattern changes and, in either case, stiffness is reduced. It is

worth noting that each point follows a different path and, hence, exhibits a different stiffness, while E1 ¼ E2

and s1 is constant. Finally, if both stress and displacement are prescribed, a creep increment of b induces a

change in the ðr–wÞ curve, as shown in Fig. 6.

In the case of integer order rate law, the related diagrams are published in Santhikumar and Karihaloo
(1996) and Santhikumar et al. (1998).
5. Finite element analysis

In the present work, the continuum surrounding the process zone is assumed as linear elastic. All non-

linear and time-dependent phenomena are assumed to occur in the process zone. When the fictitious crack

tip advances by a pre-defined length, each point located on the crack trajectory, is split into two points. The
virtual mechanical entity, acting on these two points only, is called cohesive element: the local behaviour of

such an element follows the rules mentioned in the previous section. Each cohesive element interacts with

the others only through the undamaged continuum, external to the process zone.

According to the finite element method, by taking the unknowns to be the n nodal displacement

increments, Du, and assuming that compatibility and equilibrium conditions are satisfied at all points in the

solid, the following system of n equations with nþ 1 unknowns (Du, Dk or Dt) is obtained. The creep effect

is incorporated by simply adding the pseudo-load induced by relaxation to the load vector in the equi-

librium equations (Bocca et al., 1991; Barpi et al., 1999a):
ðKT þ CTÞDu ¼ DkP þ DtQ; ð13Þ

where

• KT: positive definite tangential stiffness matrix, containing contributions from linear elastic (undamaged)

elements and possible contributions from cohesive elements having (r;w) below the curve of Fig. 5. The

conditions in which this possibility applies will be described later on;
• CT: negative definite tangential stiffness matrix, containing contributions from cohesive elements with

(r;w) on the curve of Fig. 5;
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• P: the vector of external load;

• Dk: maximum load multiplier which is compatible with Eq. (12) and the fictitious crack tip growth con-

dition ðrF:C:T ¼ ftÞ;
• Q: vector of unbalanced load (or pseudo-load) due to relaxation in the process zone, related to a unitary

time increment.

During the loading phase the behaviour of the process zone is assumed to be time-independent ðQ ¼ 0Þ,
the external load changes (Dk 6¼ 0, and Dt ¼ 0) while, during the sustained loading phase, is assumed to be

time-dependent ðQ 6¼ 0Þ and the external load is kept constant (Dk ¼ 0, and Dt 6¼ 0).

5.1. Interaction between cohesive elements

During the loading phase, all the stress paths in the FPZ are forced to follow the ðr–wÞ law (see Eq. (12)).

For the boundary condition analysed dw is always and everywhere positive. A more complex situation
occurs during the next loading phase (sustained): the unloading stiffness approaches 1 when w tends to 0þ.

In order to avoid this difficulty, a threshold value has to be assumed for w. A cohesive element is classified

as active, and submitted to the rheological model, when and only when its w is bigger than the threshold,

assumed equal to 0.001 wc. Otherwise the stress path is forced to follow the ðr–wÞ law as it occurs during

the loading phase.

According to the rheological model, for each active cohesive element, it is possible to compute the stress

relaxation under constant w ðdrtÞ as well as the creep displacement under constant rðdwtÞ. It is important

to notice that drt and dwt are threshold values computed according to the micromechanical model, while dr
and dw are real values obtained from equilibrium and compatibility conditions.

The compatibility conditions can be grouped in the following cases:

1. full relaxation only: dr ¼ drt < 0 and dw < dwt (see segment AB in Fig. 6);

2. full creep only: dr < drt < 0 and dw ¼ dwt (see segment BC in Fig. 6);

3. full creep with elastic increment: dr ¼ ðdw� dwtÞE1 > 0 and E1 > 0 and dw > dwt (see segment CD in

Fig. 6);

4. full creep with softening increment: dr ¼ ðdw� dwtÞE1 < 0 and E1 < 0 and dw > dwt (see segment CF in
Fig. 6).

In this context, the Helmholtz free energy is assumed as the objective function to be minimised at each

time step under the constraints shown in Fig. 6. The use of optimisation techniques in structural analysis to

solve the variational inequality that occurs in elastoplasticity is well known (see Maier, 1971). Since the

loading conditions are assumed as piecewise linear, each physical time step is divided into numerous logical

substeps that can be solved through the Simplex method, a classical linear programming tool. When case (3)

or case (4) are applied, stiffness matrix coefficients are changed from one substep to the next (Bocca et al.,
1991; Barpi et al., 1999a). Otherwise they are kept constant during all the substep iterations. In order to

follow this process of classification, an inner loop must be introduced.

Creep rupture time is reached when the smallest eigenvalue of the tangential stiffness matrix becomes

negative: this means that the external load can no longer be kept constant.
6. Comparison between experimental and numerical results

The experimental tests, executed on pre-notched beams, described by Zhou (1992), were simulated
numerically. The experimental procedure is based on two phases. In the first, the external load grows from



Table 1

Material properties

E (GPa) m (–) Gf (N/m) ft (MPa)

36 0.10 82 2.8

Table 2

Numerical parameters

wc (mm) s1 (s) Dt=s1 (–) b (–) Element size (mm)

0.22 150 1/50 0.05 0.0625
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Fig. 7. Experimental and numerical load vs. crack mouth opening displacement.
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zero to the nominal level (a fraction of the maximum load Pmax) under deflection control (5 · 10�6 m/s),

while, during the second, the load is kept constant until the creep rupture occurs (pre-peak sustained
bending).

These tests are usually associated with the name of pre-peak sustained bending tests. Of course, in order

to know the maximum load Pmax � 900 N, a number of static tests have to be previously executed. To
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overcome this difficulty, different investigators prefer to use the so-called post-peak tests where the creep

phase starts beyond the peak point (Carpinteri et al., 1997; Barpi et al., 1999b). The specimen dimensions

are 10 · 10 · 80 cm, the notch depth is 5 cm, while the material properties, as described in Zhou (1992), are

presented in Table 1.
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The numerical simulations were executed using the values listed in Table 2, and neglecting the time-

dependent behaviour of the undamaged material. As suggested in Barpi et al. (1999a) the following limit is

applied to each step: j drft j6 0:01.
Fig. 7 shows the experimental and numerical load vs. crack mouth opening displacement curves for static

tests as well as for sustained load tests. Fig. 8 shows the load level vs. the logarithm of the failure-lifetime
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(creep rupture time), for different values of the fractional derivative order a (0.30 and 1.00). The best fitting

of the experimental results is achieved assuming a ¼ 0:30. Experimental and numerical results appear to be

in good agreement.

Figs. 9, 12 and 15 show the non-dimensional stress ðr=rF:C:TÞ distribution in the fracture zone for the
cases Pcost

Pmax
¼ 0:76, 0.85, 0.92. The maximum value of tensile stress is ft, according to the cohesive model.
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Figs. 10, 13 and 16 show the non-dimensional opening ðw=wcÞ distribution in the fracture zone for the same

cases. Finally, Figs. 11, 14 and 17 show the stress paths, followed from some cohesive elements during the

external load growth, for the three cases examined. As explained before, the couples ðr–wÞ are not restricted
to stay on the static envelope.
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7. Conclusions

• The interaction between strain-softening and time-dependent behaviour of uncracked material can be

analysed through the micromechanical model presented.

• The incremental problem is formulated as linear with threshold. In the FPZ the equilibrium, compatibil-
ity and minimum Helmholtz free energy conditions are applied.

• Each physical time step is divided into numerous logical substeps that are solved through the Simplex

method, a classical linear programming tool.

• A single rheological has been used. It has been shown that four material properties only, namely, the elas-

tic moduli E1 and E2, the relaxation time s1 and the order a of the fractional derivative are needed to

describe the phenomenon. Hence, a fractional order rate makes it possible to include a whole spectrum

of dissipative mechanisms in a single viscous element.

• It is not necessary to use long chains of rheological elements, whose properties are difficult to determine.
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