IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 41 (2004) 2607-2621

A fractional order rate approach for modeling
concrete structures subjected to creep and fracture

F. Barpi *, S. Valente '

Department of Structural and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Received 24 March 2003; received in revised form 12 December 2003

Abstract

The paper analyses the behaviour of concrete in the case of quasi-static fracture. The attention is focused on the
interaction between strain-softening and time-dependent behaviour: a viscous rheological element (based on a frac-
tional order rate law) is coupled with a micromechanical model for the fracture process zone. This approach makes it
possible to include a whole range of dissipative mechanisms in a single rheological element. Creep fracture in mode I
conditions is analysed through the finite element method and the cohesive (or fictitious) crack model. The comparison
with creep tests executed on three-point bending conditions (three different load levels) shows a good agreement both in
terms of failure-lifetime, and, load—displacement.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The long-term performance of concrete structures is fundamentally affected by the behaviour of the
material after cracking. It is well known that concrete presents a diffused damage zone within which mi-
crocracking increases and stresses decrease as the overall deformation increases. This results in the soft-
ening of the material in the so called fracture process zone (FPZ), whose size can be compared with a
characteristic dimension of the structure. This dimension is not constant and can vary during the evolu-
tionary process. In this context, a numerical method (based on finite or boundary elements) has to be used
together with the cohesive or fictitious crack model as shown by Barenblatt (1959), Dugdale (1960) and
Hillerborg et al. (1976).

The interaction between strain-softening and time-dependent behaviour is analysed, with the emphasis
on very slow or quasi-static fracture. This is the case of cracking in massive concrete structures like dams,
where inertial forces can be neglected. In this field three approaches will be considered. The first is based on
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Nomenclature

&, € deformations of the rheological model

o stress of the rheological model, stress in the cohesive zone

g stress of the rheological model

Ey, E;, Young’s moduli of the rheological model

n classical Newton’s viscosity parameter

T = E’—’l relaxation time

D*(e) = d;ﬁ: ) fractional derivative operator of order

o order of differentiation

r Eulerts Gamrpa func}ion I(x) = [y etV dr = lim, . m)

y(2) generic function of time

@,_,(t) kernel of the non-integer differentiation definition

bi(o)  ith coefficient of the numerical approximation of the non-integer derivative

E. concrete Young’s modulus

K, K, elastic constants of the rheological model (see Fig. 6)

v Poisson’s ratio

Y fracture energy (area below the curve of Fig. 5)

fi ultimate tensile strength

orpct Mmaximum principal (tensile) stress acting at the fictitious crack tip

w crack opening displacement (also called COD)

COD  crack opening displacement (also called w)

We critical crack opening displacement (beyond w, no stresses are transferred in the cohesive zone)

14 aggregate volume fraction

KPom  fracture toughness of the homogenized material

p concrete microstructural parameter ([3 = Eiﬁh{‘x 7 )

Ao stress relaxation due to creep ‘

Aw creep displacement

t time

z distance measured from the bottom of the specimen

At time step

da, stress relaxation computed in each point of the FPZ (depends on local conditions only because
it is assumed w = const)

dw, creep displacement computed in each point of the FPZ (depends on local conditions only
because it is assumed ¢ = const)

do real stress increment in the FPZ (depends on global and local conditions)

dw real displacement increment (depends on global and local conditions)

H specimen height

Poax maximum (or peak) load

Prost constant load level during the creep phase

Kt positive definite tangential stiffness matrix

Cr negative definite tangential stiffness matrix

4 external load vector

A load multiplier

(0] unbalanced load vector

Au displacement vector
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the concept of activation energy and rate-dependent softening that has been developed in a series of paper
by Bazant and co-workers (Bazant, 1992; Bazant and Gettu, 1992; Bazant and Jirasek, 1992, 1993; Wu and
Bazant, 1993). This method was recently modified by van Zijl et al. (2001). The second approach is based on
the inclusion of a standard rheological model for creep and relaxation into the fictitious crack model in
order to accommodate the time dependency of crack opening, the latter in some instances being established
by fitting stress relaxation results (Hansen, 1990, 1991; Zhou and Hillerborg, 1992; Zhang and Karihaloo,
1992a,b; Carpinteri et al., 1995, 1997; Barpi et al., 1999a). The third approach combines a micromechanical
model for the static softening behaviour of cracked concrete in the fracture process zone (Huang and Li,
1989) with a rheological model for the time-dependent concrete behaviour (Santhikumar and Karihaloo,
1996, 1998; Santhikumar et al., 1998).

In the present paper the third approach is enhanced using a fractional order rate law and is applied to the
numerical simulation of the three-point bending tests described by Zhou (1992).

2. Description of the rheological model

Rheology is concerned with time-dependent deformation of solids. In the simplest rheological model of
the linear standard viscoelastic solid (Fig. 1), the springs are characterized by linear stress—displacement
relationships:

oy =Ei(e— &), (la)
0y = E28. (lb)
In this paper, the dashpot is based on the following fractional order rate law for the internal variable ¢;:

de; o1  e—g

D¢ = =—=
dr*  Etf 4

with o € (0, 1), (2)

where the fractional differentiation of a function y(¢) is defined according to Oldham and Spanier (1974)
and Carpinteri and Mainardi (1997). Eq. (2) represents a generalization of the well-known Newton’s
constitutive law for the dashpot (¢ = n$).

In particular

1
Dy (1) = / B\, (1 — Dy(D)dr, 3)
=)
o o
- >
E;
e-g, &

Fig. 1. Rheological model.
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where

0 . t ifr>0

In the previous expression I' represents the Gamma function. Eq. (3) can also be obtained by using an
hereditary model based on a Rabotnov fractional exponential kernel (see Karihaloo, 1995).
A convergent expression for the a-order fractional derivative operator D* is given by

D50 =000 = g [ o m@a = [ (5

In the case of o =1 the classical dashpot with an integer order rate law is obtained from Eq. (2). In
particular, the solutions for the relaxation problem (under constant w) and for the creep problem (under
constant ¢) become of exponential type, with 1, as the relaxation time, and 1, ElELZEZ as the retardation time.
Response diagrams are plotted in Figs. 2 and 3 (see Barpi and Valente, 2003).
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Fig. 2. Stress relaxation functions.
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Fig. 3. Creep displacement functions.
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Creep rate d(w/w(t=0))/dt
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Fig. 4. Rate of creep displacement functions.

Fig. 4 shows the the influence of the non-integer derivative on the creep rate (i.e., the derivative with
respect to time of the creep functions). This figure represents another way to show the difference between
the model based on integer derivative (straight line) and the model based on a non-integer derivative
(dashed and dashed-dotted curves).

2.1. Numerical integration of constitutive response

A possible approximation for the fractional differentiation of a function y(¢) is (Oldham and Spanier,
1974)

n

n+1 (Do'y) _ (;7 ij((x)wr]—jy7 (6)

=0
where it is assumed that the spacing in time is uniform, i.e., "y = y(nAt). The coefficients b;() depend on the
Gamma function as follows:

I
b () = {1 (7)

By using the recursion formula
Fj-2) (j—1-2)I(-1-a)

- = - - ) 8
ETES TR 0 ®
it is possible to avoid the evaluation of the Gamma function; the coefficients b;(o) are given by
k—1—ua
bo(O()Zl, ceey b/c(d):%bkq(d),... kzl,...,n. (9)
For convenience, the expression in Eq. (6) can be rewritten as
1
n+1 D%y = n+l_ _ ne 10
(D%y) (At)x( y="y), (10)
where
==Y bia)" Ty (11)
=1

is a known quantity at time #,,.
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At this point the updated stress quantities ""'¢ can be obtained by using Eq. (10) with reference to
Eq. (2). This finite difference approximation is applied to Eq. (2), and integrated over time, using the General
Midpoint Rule (Enelund et al., 1999).

3. Description of the micromechanical model for the process zone

In each point of the fictitious process zone a micromechanical approach to tension softening is combined
with rheological model described above, according to a strategy proposed in Santhikumar and Karihaloo
(1996) and Santhikumar et al. (1998). Tension softening behaviour appears when the damage in the
material has localized along eventual fracture planes. This behaviour has been successfully modeled using
two- and three-dimensional micromechanical models (Huang and Li, 1989; Karihaloo, 1995).

All models provide a relationship between the residual tensile stress carrying capacity and crack opening
displacement (COD) as a function of known concrete microstructural parameters (included in the factor ),
e.g. aggregate volume fraction ¥, Young’s modulus E., ultimate tensile strength f; and fracture toughness
of the homogenized material K™ (see Fig. 5). According to these models, the function is assumed to be

et ()] - ()]

4. Rheological and micromechanical model interaction

During the loading phase each point of the FPZ moves on the same (6—w) curve. Later on this condition
does not hold any longer, due to the combined effect of viscosity and damage.

In order to understand how the rheological and micromechanical models interact, three simple cases are
analysed:

1. if the displacement discontinuity w is kept constant along time step Az, a stress relaxation Ae occurs
according to the standard viscoelastic element described;

2. if the stress o is kept constant along time step A¢, a creep displacement Aw occurs according to the stan-
dard viscoelastic element described;

1 ‘ ‘ ‘ ‘
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Fig. 5. Cohesive stress-COD law (f = 0.05).
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Fig. 6. Stress and displacement increments under constant load.

3. if both stress ¢ and displacement discontinuity w (also called COD) are forced to stay on the static curve
(Eq. (12)), one of the two increments occurs as predicted by the rheological element, while the other is
equal or smaller.

In greater detail, for the first case the unloading stiffness is assumed (effective spring hypothesis, Fig. 6,
centre) while, for the second case, the stiffness tangent to the (6—w) curve of Eq. (12) is taken into account
(E; = |42/, Fig. 6, right).

At the end of each time step, the microcrack pattern changes and, in either case, stiffness is reduced. It is
worth noting that each point follows a different path and, hence, exhibits a different stiffness, while E; = E,
and 1, is constant. Finally, if both stress and displacement are prescribed, a creep increment of f§ induces a
change in the (6—w) curve, as shown in Fig. 6.

In the case of integer order rate law, the related diagrams are published in Santhikumar and Karihaloo
(1996) and Santhikumar et al. (1998).

5. Finite element analysis

In the present work, the continuum surrounding the process zone is assumed as linear elastic. All non-
linear and time-dependent phenomena are assumed to occur in the process zone. When the fictitious crack
tip advances by a pre-defined length, each point located on the crack trajectory, is split into two points. The
virtual mechanical entity, acting on these two points only, is called cohesive element: the local behaviour of
such an element follows the rules mentioned in the previous section. Each cohesive element interacts with
the others only through the undamaged continuum, external to the process zone.

According to the finite element method, by taking the unknowns to be the n nodal displacement
increments, A, and assuming that compatibility and equilibrium conditions are satisfied at all points in the
solid, the following system of n equations with n + 1 unknowns (Au, AZ or A¢) is obtained. The creep effect
is incorporated by simply adding the pseudo-load induced by relaxation to the load vector in the equi-
librium equations (Bocca et al., 1991; Barpi et al., 1999a):

(Kt + Cr)Au = AiP + AtQ, (13)

where

e K: positive definite tangential stiffness matrix, containing contributions from linear elastic (undamaged)
elements and possible contributions from cohesive elements having (g, w) below the curve of Fig. 5. The
conditions in which this possibility applies will be described later on;

e ('1: negative definite tangential stiffness matrix, containing contributions from cohesive elements with
(o, w) on the curve of Fig. 5;
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e P: the vector of external load;

e AJ: maximum load multiplier which is compatible with Eq. (12) and the fictitious crack tip growth con-
dition (orcrt = f1);

e (: vector of unbalanced load (or pseudo-load) due to relaxation in the process zone, related to a unitary
time increment.

During the loading phase the behaviour of the process zone is assumed to be time-independent (Q = 0),
the external load changes (A/ # 0, and Az = 0) while, during the sustained loading phase, is assumed to be
time-dependent (Q # 0) and the external load is kept constant (A4 = 0, and Az # 0).

5.1. Interaction between cohesive elements

During the loading phase, all the stress paths in the FPZ are forced to follow the (6—w) law (see Eq. (12)).
For the boundary condition analysed dw is always and everywhere positive. A more complex situation
occurs during the next loading phase (sustained): the unloading stiffness approaches oo when w tends to 0.
In order to avoid this difficulty, a threshold value has to be assumed for w. A cohesive element is classified
as active, and submitted to the rheological model, when and only when its w is bigger than the threshold,
assumed equal to 0.001 w,.. Otherwise the stress path is forced to follow the (¢—w) law as it occurs during
the loading phase.

According to the rheological model, for each active cohesive element, it is possible to compute the stress
relaxation under constant w (day) as well as the creep displacement under constant o(dw;). It is important
to notice that doy and dw, are threshold values computed according to the micromechanical model, while do
and dw are real values obtained from equilibrium and compatibility conditions.

The compatibility conditions can be grouped in the following cases:

. full relaxation only: do = doy < 0 and dw < dw, (see segment AB in Fig. 6);

. full creep only: d¢ < doy < 0 and dw = dw, (see segment BC in Fig. 6);

3. full creep with elastic increment: do = (dw — dw,)E; > 0 and E; > 0 and dw > dw; (see segment CD in
Fig. 6);

4. full creep with softening increment: do = (dw — dw)E; < 0 and E; < 0 and dw > dw (see segment CF in

Fig. 6).

DN —

In this context, the Helmholtz free energy is assumed as the objective function to be minimised at each
time step under the constraints shown in Fig. 6. The use of optimisation techniques in structural analysis to
solve the variational inequality that occurs in elastoplasticity is well known (see Maier, 1971). Since the
loading conditions are assumed as piecewise linear, each physical time step is divided into numerous logical
substeps that can be solved through the Simplex method, a classical linear programming tool. When case (3)
or case (4) are applied, stiffness matrix coefficients are changed from one substep to the next (Bocca et al.,
1991; Barpi et al., 1999a). Otherwise they are kept constant during all the substep iterations. In order to
follow this process of classification, an inner loop must be introduced.

Creep rupture time is reached when the smallest eigenvalue of the tangential stiffness matrix becomes
negative: this means that the external load can no longer be kept constant.

6. Comparison between experimental and numerical results

The experimental tests, executed on pre-notched beams, described by Zhou (1992), were simulated
numerically. The experimental procedure is based on two phases. In the first, the external load grows from
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Table 1
Material properties

E (GPa) v () %; (N/m) f; (MPa)
36 0.10 82 2.8

Table 2
Numerical parameters

we (mm) 71 (8) A/t () p ) Element size (mm)
0.22 150 1/50 0.05 0.0625

Numerical

Experimental

o
>
|

Load P (kN)
o
[e)]
|
7
Vd
/7

o
N
|

0 0.1 0.2 0.3 0.4
Crack Mouth Opening Displacement (mm)

Fig. 7. Experimental and numerical load vs. crack mouth opening displacement.

0.95
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3 09 @ Experimental
g
a8
[N
5 0.85 ® o
ks
g
S 08 oo o
‘ L [ ]
0.75
10" 10° 10° 10

Failure lifetime (s)

Fig. 8. Comparison between experimental and numerical results.

zero to the nominal level (a fraction of the maximum load Py,,) under deflection control (5x10~° m/s),
while, during the second, the load is kept constant until the creep rupture occurs (pre-peak sustained
bending).

These tests are usually associated with the name of pre-peak sustained bending tests. Of course, in order
to know the maximum load P, =~ 900 N, a number of static tests have to be previously executed. To
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overcome this difficulty, different investigators prefer to use the so-called post-peak tests where the creep
phase starts beyond the peak point (Carpinteri et al., 1997; Barpi et al., 1999b). The specimen dimensions
are 10x 10 x 80 cm, the notch depth is 5 cm, while the material properties, as described in Zhou (1992), are

presented in Table 1.

0.8}

0.6/

ZH (-)

04|~

0.2}~

-4 -3 -2 -1 0 1
0/0ccr ()

Fig. 9. Stress distribution in the fracture zone for the case If.:ﬂ =0.76.

08N\

ZH (-)

0.2 0.3 0.4
wiw,(-)

Fig. 10. Crack opening distribution in the fracture zone for the case % = 0.76.
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The numerical simulations were executed using the values listed in Table 2, and neglecting the time-
dependent behaviour of the undamaged material. As suggested in Barpi et al. (1999a) the following limit is
applied to each step: |%| <0.01.

Fig. 7 shows the experimental and numerical load vs. crack mouth opening displacement curves for static
tests as well as for sustained load tests. Fig. 8 shows the load level vs. the logarithm of the failure-lifetime

1
N
R
\ S —
= 0.6 \ \{// —
)
©
04|~
0.2 |~
0 : : : : : : : : :
0 0.02 0.04 0.06 0.08 0.1
wiw_(-)
[
Fig. 11. Stress paths for the case ﬁ‘“ﬁ“ =0.76.
1 —
0.8 |
0.6 |-
T
N
04 |-
0.2 |
0 : : : : : : : :
-4 -3 -2 -1 0 1

/67 ()

Fig. 12. Stress distribution in the fracture zone for the case ﬁ;%i =0.85.
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(creep rupture time), for different values of the fractional derivative order o (0.30 and 1.00). The best fitting
of the experimental results is achieved assuming o = 0.30. Experimental and numerical results appear to be
in good agreement.

Figs. 9, 12 and 15 show the non-dimensional stress (¢/ofc1) distribution in the fracture zone for the
cases % =0.76, 0.85, 0.92. The maximum value of tensile stress is f;, according to the cohesive model.

0.8 AN\

Z/H (-)

0.2 03 0.4
wiw, (-)

Fig. 13. Crack opening distribution in the fracture zone for the case %‘:“ =0.85.

AN

z R
g
Y
[3

0.4 |-

0.2 |-

0 0.02 0.04 0.06 0.08 0.1
wiw,(-)

Fig. 14. Stress paths for the case ﬁ;}“:; =0.85.
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Fig. 15. Stress distribution in the fracture zone for the case ,’;;‘—‘;“ =0.92.
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Fig. 16. Crack opening distribution in the fracture zone for the case % =0.92.

Figs. 10, 13 and 16 show the non-dimensional opening (w/w,) distribution in the fracture zone for the same
cases. Finally, Figs. 11, 14 and 17 show the stress paths, followed from some cohesive elements during the
external load growth, for the three cases examined. As explained before, the couples (6—w) are not restricted

to stay on the static envelope.
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Fig. 17. Stress paths for the case Pj““: =0.92.

P

7. Conclusions

e The interaction between strain-softening and time-dependent behaviour of uncracked material can be
analysed through the micromechanical model presented.

e The incremental problem is formulated as linear with threshold. In the FPZ the equilibrium, compatibil-
ity and minimum Helmholtz free energy conditions are applied.

e Each physical time step is divided into numerous Jlogical substeps that are solved through the Simplex
method, a classical linear programming tool.

e A single rheological has been used. It has been shown that four material properties only, namely, the elas-
tic moduli E; and E,, the relaxation time t; and the order a of the fractional derivative are needed to
describe the phenomenon. Hence, a fractional order rate makes it possible to include a whole spectrum
of dissipative mechanisms in a single viscous element.

e It is not necessary to use long chains of rheological elements, whose properties are difficult to determine.
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